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Abstract In this paper a singular dissipative impulsive boundary value problem with
n-impulsive points is investigated. In particular, using the Lidskiı̆’s theorem it is proved
that all eigen and associated functions of this problem is complete in the Hilbert space.
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1 Introduction

Impulsive differential operators, that is, differential operators involving impulsive
effects, appear as a natural description of observed evolution phenomena of several real
world problems. Many physical, chemical, biological phenomena involving thresh-
olds, bursting rhythm models in medicine, pharmacokinetics and frequency modulated
systems and mathematical models in economics, do exhibit impulsive effects [1]. The
theory of impulsive differential operators is a new and important branch of operator
theory, which has an extensive physical, chemical and realistic mathematical model
and hence has been emerging as an important area of investigation. Operator theory
is useful to investigate the boundary value and impulsive boundary value problems
(IBVPs). In these problems real-valued coefficients in the differential expressions and
real parameters in the boundary-impulsive conditions generate the selfadjoint (sym-
metric) operators. It is well known that all eigenvalues are real of such operators.
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e-mail: ekinugurlu@yahoo.com

E. Bairamov
e-mail: bairamov@science.ankara.edu.tr

123



J Math Chem (2013) 51:1670–1680 1671

There are a lot of works about the spectral analysis of selfadjoint operators [2–9]. On
the other hand non-real coefficients or non-real parameters generate nonselfadjoint
operators. A kind of such operators have been investigated in [10–14].

An important part of nonselfadjoint operators is the class of dissipative operators.
It is well known that all eigenvalues of the dissipative operators lie in the closed upper
half-plane. This part only of the spectral analysis is so weak. Because distrubitions and
multiplities of eigenvalues are not known with this analysis. Further another question
is about whether the system of all eigen and associated functions associated with these
eigenvalues span the space or not. To answer these questions there are some methods.
Some of them are Livšic’s theorem [13], Krein’s theorem [13], Nagy–Foiaş’s theorem
[15] and Lidskiı̆’s theorem [13]. The first three theorems were used in the literature
to investigate the spectral analysis of the boundary value and IBVPs [16–24]. In this
paper, the IBVP (3.1)–(3.5) with n-impulsive points (2 ≤ n < ∞) is investigated.
In particular, using the Lidskiı̆’s theorem it is proved that all eigen and associated
functions of this problem is complete in the Hilbert space L2

w(�),where� = ∪n+1
k=1�k

and �k = (ck−1, ck).

2 Preliminaries

Let L denotes the linear nonselfadjoint operator in the Hilbert space H with the domain
D(L). The element y ∈ D(L), y �= 0, is called a root function of the operator L
corresponding to the eigenvalue λ0, if all powers of L are defined on this element and
(L − λ0 I )n y = 0 for some n > 0. The set of all root functions of L corresponding to
the eigenvalue λ0 with y = 0 forms a linear set Nλ0 and is called the root lineal. The
dimension of the lineal Nλ0 is called the algebraic multiplicity of the eigenvalue λ0.

The functions y1, y2, . . . , yk are called the associated functions of the eigenfunction
y0 if they belong to D(L) and the equalities Ly j = λ0 y j + y j−1, j = 1, 2, . . . , k
hold.

The completeness of the system of all eigen and associated functions of L is equiv-
alent to the completeness of the system of all root functions of this operator.

If, for the operator L with dense domain D(L) in H, the inequality � (Ly, y) ≥ 0
(y ∈ D(L)) holds, then L is called dissipative.

Theorem 2.1 ([19]) Let L be an invertible operator. Then, −L is dissipative if and
only if the inverse operator L−1 of L is dissipative.

Lidskiı̆’s Theorem ([13], p. 231) If the dissipative operator L is the nuclear operator,
then its system of root functions is complete in H.

A linear bounded operator A defined on the seperable Hilbert space H is said to be
of trace class (nuclear) if the series

∑

k

(Aek, ek)
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converges and has the same value in any orthonormal basis {ek} of H . The sum

T r A =
∑

k

(Aek, ek)

is called the trace of A.
The kernel G(s, t), s, t ∈ R, of the integral operator K on L2(R)

K f =
∫

R

G(s, t) f (s)ds, f ∈ L2(R),

is a Hilbert–Schmidt kernel if |G(s, t)|2 is integrable on R
2, i.e.,

∫

R2

|G(s, t)|2 dsdt < ∞.

A Hilbert–Schmidt kernel which is measurable and such that G(s, s) is integrable on
R is called a trace-class kernel [25, p. 79], [26, p. 526].

Integral operator with trace class kernel is nuclear.

3 Statement of the problem

Let η be the differential expression defined by

η(y) = 1

w(x)

[−(p(x)y′)′ + q(x)y
]
, x ∈ � :=

n+1⋃

k=1

�k,

where �k = (ck−1, ck) and −∞ < c0 < c1 < · · · < cn+1 ≤ ∞. It is assumed that
the points c0, c1, . . . , cn are regular and cn+1 is singular for the differential expression
η, p, q and w are real-valued, Lebesgue measurable functions on �, p−1, q, w ∈
L1

loc(�k), k = 1, 2, . . . , n + 1, and, w(x) > 0 for almost all x on �.
Let L2

w(�) be the Hilbert space consisting of all complex valued functions y such
that

∫
�
w(x) |y(x)|2 dx < ∞ with the inner product

(y, χ) =
∫

�

w(x)y(x)χ(x)dx .

Let

D =
{

y ∈ L2
w(�) : y, py′ ∈ ACloc(�k), η(y) ∈ L2

w(�)
}
,

where ACloc(�k), k = 1, 2, . . . , n + 1, denotes the set consisting of all locally
absolutely continuous functions on �k .
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For arbitrary y, χ ∈ D, Green’s formula is

∫

�

w(x)η(y)χ(x)dx −
∫

�

w(x)y(x)η(χ)dx =
n+1∑

k=1

[y, χ ]ck−
ck−1+,

where [y, χ ]ck−
ck−1+ = [y, χ ]ck− − [y, χ ]ck−1+, [y, χ ]x := y(x)χ [1](x)− y[1](x)χ(x)

and y[1] denotes py′.Green’s formula implies that at singular point cn+1 for all y, χ ∈
D, the limit [y, χ ]cn+1 := [y, χ ]cn+1− = limx→cn+1−[y, χ ]x exists and is finite.

In this paper it is assumed that the functions p, q and w satisfy the Weyl’s limit-
circle case conditions at singular point cn+1.Weyl’s theory is well known and there are
several sufficient conditions in which Weyl’s limit-circle case holds for a differential
expression [27–30].

Let us consider the solutions ϕ(x, λ) = {ϕ1(x, λ), ϕ2(x, λ), . . . , ϕn+1(x, λ)} and
ψ(x, λ) = {ψ1(x, λ), ψ2(x, λ), . . . , ψn+1(x, λ)}, where ϕk(x, λ) and ψk(x, λ) are
the parts of the functions ϕ(x, λ) and ψ(x, λ), respectively, defined on the interval
�k (k = 1, 2, . . . , n + 1), of the equation

− (p(x)y′)′ + q(x)y = λw(x)y, x ∈ �, (3.1)

where λ is some complex parameter, satisfying the conditions [5–9,22–24]

{
ϕ1(c0, λ) = cosα, ϕ

[1]
1 (c0, λ) = sin α,

ψ1(c0, λ) = − sin α, ψ
[1]
1 (c0, λ) = cosα,

and

{
ϕm+1(cm+, λ) = 1

γm
ϕm(cm−, λ), ϕ

[1]
m+1(cm+, λ) = 1

γ ′
m
ϕ

[1]
m (cm−, λ),

ψm+1(cm+, λ) = 1
γm
ψm(cm−, λ), ψ

[1]
m+1(cm+, λ) = 1

γ ′
m
ψ

[1]
m (cm−, λ),

where α, γm and γ ′
m are some real numbers with γmγ

′
m > 0 and m = 1, 2, . . . , n.

Since Weyl’s limit-circle case holds at singular point cn+1 for η, the solutions ϕ(x, λ)
and ψ(x, λ) (x ∈ �) belong to L2

w(�).
Let z(x) = {z1(x), z2(x), . . . , zn+1(x)} and u(x) = {u1(x), u2(x), . . . , un+1(x)}

be the solutions of η(y) = 0 (x ∈ �) satisfying the conditions

{
z1(c0) = cosα, z[1]

1 (c0) = sin α,
u1(c0) = − sin α, u[1]

1 (c0) = cosα,

and

{
zm+1(cm+) = 1

γm
zm(cm−), z[1]

m+1(cm+) = 1
γ ′

m
z[1]

m (cm−),
um+1(cm+) = 1

γm
um(cm−), u[1]

m+1(cm+) = 1
γ ′

m
u[1]

m (cm−),
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where α, γm and γ ′
m are some real numbers with γmγ

′
m > 0 and m = 1, 2, . . . , n. It

is clear that z(x) = ϕ(x, 0) (x ∈ �) and u(x) = ψ(x, 0) (x ∈ �). Hence z(x) and
u(x) belong to L2

w(�). Further they belong to D. This implies that for each y ∈ D,
at singular point cn+1, the values [y, z]cn+1 and [y, u]cn+1 exist and are finite.

It should be noted that [y, χ ]x (x ∈ �) denotes the Wronskian of the solutions
y = y(x, λ) and χ = χ(x, λ) of (3.1).

For y ∈ D, let us consider the following boundary and impulsive conditions

y(c0) cosα + y[1](c0) sin α = 0, (3.2)

[y, z]cn+1
− h[y, u]cn+1 = 0, (3.3)

y(cm−) = γm y(cm+), (3.4)

y[1](cm−) = γ ′
m y[1](cm+), (3.5)

where α, γm and γ ′
m are real numbers with γmγ

′
m > 0, m = 1, 2, . . . , n, and h is some

complex number such that h = �h + i�h with �h > 0. The main aim of present
paper is to investigate the spectral analysis of the problem (3.1)–(3.5).

It is better to note that for the values γm = γ ′
m = 1 (m = 1, 2, . . . , n), the problem

was investigated in [16] with p(x) = w(x) = 1, [17] with w(x) = 1, [20] with
p(x) = w(x) = 1 and [21]. Further for m = 1, the problem was studied in [22,24]

with p(x) = w(x) = 1 and [23] with p(x) = 1, q(x) = ν2− 1
4

x2 + q1(x), where q1(x)
is continuous function on some interval.

4 Completeness theorem

Let H =
n+1⊕
k=1

Hk, Hk = L2
wk
(�k), be the Hilbert space with the inner product

〈y, χ〉H =[(y1, χ1)H1 , (y2, χ2)H2 , . . . , (yn+1, χn+1)Hn+1][1, ϒ1, . . . , ϒ1ϒ2 . . . ϒn]T,

where (yk, χk)Hk
= ∫

�k
wk(x)yk(x)χk(x)dx, k = 1, 2, . . . , n + 1, y(x) =

{y1(x), y2(x), . . . , yn+1(x)} ∈ H, χ(x) = {χ1(x), χ2(x), . . . , χn+1(x)} ∈ H,
w(x) = {w1(x), w2(x), . . . , wn+1(x)}, ϒm := γmγ

′
m, m = 1, 2, . . . , n, and [.]T

denotes the transpose of the matrix [.].
Let D(N ) be the set of all functions y ∈ H such that y, y[1] are locally absolutely

continuous functions on all �k, k = 1, 2, . . . , n + 1, satisfying η(y) ∈ H, R−(y) =
0, R+(y) = 0, Rm(y) = 0 and R′

m(y) = 0, where R−(y) = y(c0) cosα +
y[1](c0) sin α, R+(y) = [y, z]cn+1 − h[y, u]cn+1 , Rm(y) = y(cm−) − γm y(cm+)
and R′

m(y) = y[1](cm−)− γ ′
m y[1](cm+), m = 1, 2, . . . , n.

Let N be the operator defined on D(N ) as N y = η(y) (x ∈ �). Then the IBVP
(3.1)–(3.5) can be handled in H as

N y = λy, y ∈ D(N ), x ∈ �.
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It is clear that the eigenvalues and the root lineals of N and the IBVP (3.1)–(3.5)
coincide.

Consider the solution v(x) = {v1(x), v2(x), . . . , vn+1(x)} of η(y) = 0 (x ∈ �),
where v(x) = z(x) − hu(x) (x ∈ �) and vk(x) = zk(x) − huk(x) (x ∈ �k) (k =
1, 2, . . . , n +1). It is easy to see that v(x) satisfies the boundary-impulsive conditions
(3.3)–(3.5). On the other hand u(x) satisfies the boundary-impulsive conditions (3.2),
(3.4), (3.5).

Let �k = [uk, vk]x (x ∈ �k), k = 1, 2, . . . , n + 1. Then the equalities

�1 = −1,�2 = − 1

ϒ1
, . . . ,�n+1 = − 1

ϒ1ϒ2 . . . ϒn
(4.1)

hold [16–18,22–24].
From (4.1), for arbitrary y, χ ∈ D(N ) the following equalities are obtained

[y1, χ1]x = [y1, z1]x [χ1, u1]x − [y1, u1]x [χ1, z1]x , x ∈ �1,

[y2, χ2]x = ϒ1
{[y2, z2]x [χ2, u2]x − [y2, u2]x [χ2, z2]x

}
, x ∈ �2,

...[
yn+1, χn+1

]
x = ϒ1ϒ2 . . . ϒn{[yn+1, zn+1]x [χn+1, un+1]x

−[yn+1, un+1]x [χn+1, zn+1]x }, x ∈ �n+1. (4.2)

Theorem 4.1 The operator N is dissipative in H.

Proof For y ∈ D(N ), a direct calculation gives

〈N y, y〉H − 〈y, N y〉H = [y, y]c1−
c0+ + ϒ1[y, y]c2−

c1+ + · · · +ϒ1ϒ2 . . . ϒn[y, y]cn+1−
cn+ .

(4.3)

The conditions R−(y) = 0, Rm(y) = 0 and R′
m(y) = 0 (m = 1, 2, . . . , n) give

[y, y]c0+ = 0, [y, y]c1− = ϒ1[y, y]c1+, . . . , [y, y]cn− = ϒn[y, y]cn+1 . (4.4)

Further form the formula (4.2) and the condition R+(y) = 0, we get that

[y, y]cn+1
= ϒ1ϒ2 . . . ϒn2i�h

∣∣[y, u]cn+1

∣∣2 . (4.5)

Substituting (4.4) and (4.5) in (4.3) we have

� 〈N y, y〉H = (ϒ1ϒ2 . . . ϒn)
2 �h

∣∣[y, u]cn+1

∣∣2 (4.6)

and this completes the proof. ��
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Theorem 4.2 The operator N has no real eigenvalue.

Proof Let λ0 be a real eigenvalue of N andψ = ψ(x, λ0) (x ∈ �) be the correspond-
ing eigenfunction of λ0. A direct calculation gives

� 〈Nψ,ψ〉H = �
(
λ0 ‖ψ‖2

H

)
. (4.7)

Since λ0 is a real number, from (4.7) and (4.6) we get that [ψ, u]cn+1 = 0. Hence from
(3.3) we have [ψ, z]cn+1 = 0.

Setting ϕ = ϕ(x, λ0) (x ∈ �) and using (4.2) one gets that

1 = ϒ1ϒ2 . . . ϒn[ϕ,ψ]cn+1

= (ϒ1ϒ2 . . . ϒn)
2 {[ϕn+1, zn+1]cn+1[ψn+1, un+1]cn+1

−[ϕn+1, un+1]cn+1[ψn+1, zn+1]cn+1} = 0.

This contradiction completes the proof. ��
From Theorems 4.1 and 4.2, we get that all eigenvalues of N lie in the open upper

half-plane.
In particular zero is not an eigenvalue of N .
Let us consider the functions

ζ1(x, λ) = [ψn+1(x, λ), zn+1(x)]x , ζ2(x, λ) = [ψn+1(x, λ), un+1(x)]x .

If we set

ζ(λ) := ζ1(cn+1, λ)− hζ2(cn+1, λ),

then the zeros of ζ(λ) coincide with the eigenvalues of the operator N .

Theorem 4.3 The function ζ(λ) is an entire function.

Proof For the solution y = y(x, λ) = {y1(x, λ), y2(x, λ), . . . , yn+1(x, λ)} of Eq.
(3.1), it is possible to get that

yn+1 = ϒ1ϒ2 . . . ϒn ([yn+1, un+1]x zn+1 − [yn+1, zn+1]x un+1) , x ∈ �n+1. (4.8)

Let

�1(x, λ) = [yn+1, zn+1]x , �2(x, λ) = [yn+1, un+1]x , x ∈ �n+1. (4.9)

Following [31], for x ∈ �n+1 we have

∂

∂x
�1(x, λ) = λyn+1(x, λ)zn+1(x)wn+1(x),

∂

∂x
�2(x, λ) = λyn+1(x, λ)un+1(x)wn+1(x). (4.10)
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Substituting (4.8) in (4.10) and using (4.9) we get that

∂

∂x
�(x, λ) = λA(x)�(x, λ), x ∈ �n+1, (4.11)

where

�(x, λ) =
[
�1(x, λ)
�2(x, λ)

]
,

A(x) =
[
−ϒ1ϒ2 . . . ϒnzn+1(x)un+1(x)wn+1(x) ϒ1ϒ2 . . . ϒnz2

n+1(x)wn+1(x)
−ϒ1ϒ2 . . . ϒnu2

n+1(x)wn+1(x) ϒ1ϒ2 . . . ϒnzn+1(x)un+1(x)wn+1(x)

]
.

Since zn+1, un+1 ∈ L2
wn+1

(�n+1), the elements of A(x) are in L1(�n+1). It is known

[27,32] that for fixed d ∈ �1, the functionsψ1(d, λ) andψ [1]
1 (d, λ) are entire functions

of λ of order 1
2 . From transmission conditions (3.4), (3.5), all ψk(e, λ) and ψ [1]

k (e, λ),
e ∈ �k, k = 2, 3, . . . , n + 1, are entire functions of λ of order 1

2 for fixed e ∈ �k .

Hence ζ j (b, λ) ( j = 1, 2) are entire functions of λ of order 1
2 for fixed b, cn ≤ b <

cn+1.
Let y(x, λ) = ψ(x, λ) (x ∈ �). Then from (4.11 ) it is obtained that

ζ̃ (x, λ) = ζ̃ (b, λ)+ λ

x∫

b

A(t )̃ζ (t, λ)dt, x ∈ �n+1, (4.12)

where

ζ̃ (x, λ) =
[
ζ1(x, λ)
ζ2(x, λ)

]
.

Using Gronwall inequality, from (4.12) we arrive at

∥∥̃ζ (x, λ)
∥∥ ≤ ∥∥̃ζ (b, λ)

∥∥ exp

⎛

⎝|λ|
x∫

b

‖A(t)‖ dt

⎞

⎠ , x ∈ �n+1. (4.13)

From (4.12) and (4.13) we get for x ∈ �n+1 that

∥∥̃ζ (cn+1, λ)− ζ̃ (b, λ)
∥∥

≤ |λ| ∥∥̃ζ (b, λ)∥∥
⎛

⎝
cn+1∫

b

‖A(t)‖ dt

⎞

⎠ exp

⎛

⎝|λ|
cn+1∫

cn

‖A(t)‖ dt

⎞

⎠ . (4.14)

From (4.14) as b → cn+1, ζ̃ (b, λ) → ζ̃ (cn+1, λ), uniformly in λ in each compact
set. Hence the proof is completed. ��

123



1678 J Math Chem (2013) 51:1670–1680

Theorem 4.3 shows that all zeros of ζ(λ) (all eigenvalues of N ) are discrete and
possible limit points of these zeros (eigenvalues of N ) can only occur at infinity.

For y ∈ D(N ), the equation N y = f (x) (x ∈ �) is equivalent to the nonhomoge-
neous differential equation

η(y) = f (x), x ∈ �,

subject to the conditions

y(c0) cosα + y[1](c0) sin α = 0,

[y, z]cn+1
− h[y, u]cn+1 = 0, �h > 0,

y(cm−) = γm y(cm+),
y[1](cm−) = γ ′

m y[1](cm+),

where γmγ
′
m > 0, m = 1, 2, . . . , n and f (x) = { f1(x), f2(x), . . . , fn+1(x)} ∈

L2
w(�).
The general solution of the homogeneous differential equation can be represented

as y(x) = {s1u1(x) + p1v1(x),…,sn+1un+1(x) + pn+1vn+1(x)}, where all sk and
pk (k = 1, 2, . . . , n + 1) are arbitrary constants [6,22–24].

By applying the standart method of variation of parameters the general solution is
obtained as

y(x) =
⎧
⎨

⎩u1(x)

⎡

⎣ϒ1

c2∫

c1

f2v2w2dξ + · · · +ϒ1ϒ2 . . . ϒn

cn+1∫

cn

fn+1vn+1wn+1dξ

+
c1∫

x

f1v1w1dξ

⎤

⎦+ v1(x)

x∫

c0

f1u1w1dξ, u2(x)

⎡

⎣ϒ1ϒ2

c3∫

c2

f3v3w3dξ + · · ·

+ϒ1ϒ2 . . . ϒn

cn+1∫

cn

fn+1vn+1wn+1dξ +ϒ1

c2∫

x

f2v2w2dξ

⎤

⎦

+v2(x)

⎡

⎣
c1∫

c0

f1u1w1dξ +ϒ1

x∫

c1

f2u2w2dξ

⎤

⎦ , . . . ,

ϒ1ϒ2 . . . ϒnun+1(x)

cn+1∫

x

fn+1vn+1wn+1dξ + vn+1(x)

×
⎡

⎣
c1∫

c0

f1u1w1dξ +ϒ1

c2∫

c1

f2u2w2dξ + · · · +ϒ1ϒ2 . . . ϒn−1

cn∫

cn−1

fnunwndξ

+ϒ1ϒ2 . . . ϒn

x∫

cn

fn+1un+1wn+1dξ

⎤

⎦

⎫
⎬

⎭ .
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Let us set

G(x, ξ) =
{

u(x)v(ξ), c0 ≤ x ≤ ξ ≤ cn+1; x, ξ �= ck; k = 1, 2, . . . , n
u(ξ)v(x), c0 ≤ ξ ≤ x ≤ cn+1; x, ξ �= ck; k = 1, 2, . . . , n

(4.15)

Then the general solution can be represented as

y(x) = [
(G(x, ξ), f (ξ))H1, (G(x, ξ), f (ξ))H2 , . . . , (G(x, ξ), f (ξ))Hn+1

]

×[1, ϒ1, . . . , ϒ1ϒ2 . . . ϒn]T ,

that is,

y(x) = 〈
G(x, ξ), f (ξ)

〉
H ,

where f ∈ L2
w(�).

Let us consider the operator K defined by the formula

K f = 〈
G(x, ξ), f (ξ)

〉
H , (4.16)

where f ∈ L2
w(�).

It is clear that K = N−1. Consequently the root lineals of the operators K and N
coincide. Hence the completeness of the system of all eigen and associated functions
of K is equivalent to the completeness of those for N in H .

Since u, v ∈ L2
w(�) we obtain that G(x, ξ) is a Hilbert–Schmidt kernel which is

measurable and G(x, x) is integrable on�. Hence K is of trace class. Let us consider
the operator −K . Since N is a dissipative operator, hence from Theorem 2.1, −K is
also a dissipative operator. Thus all conditions are satisfied for the Lidskiı̆ ’s theorem.
Hence we have;

Theorem 4.4 The system of all root functions of −K (also K )is complete in H.

Since the completeness of the system of all root functions (eigen and associated
functions) of K is equivalent to the completeness of those for N , and from all conclu-
sions throughout the paper it is obtained;

Theorem 4.5 All eigenvalues of the IBVP (3.1)–(3.5) lie in the open upper half-plane
and they are purely discrete. The limit points of these eigenvalues can only occur at
infinity. The system of all eigen and associated functions of the IBVP (3.1)–(3.5) is
complete in L2

w(�).
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